Abstract

A solar cell device architecture with top-illumination, where the light does not pass through the substrate, is advantageous for many applications. It is also specifically useful for the construction of tandem or multiple junction photovoltaic devices, with illumination through the top solar cell. Here, a top-illuminated colloidal quantum dot solar cell (TI-CQDSC) is demonstrated and compared with a conventional colloidal quantum dot solar cell (C-CQDSC) constructed on a FTO (fluorine doped tin oxide) glass substrate both theoretically and experimentally. The optical electric field distribution in the solar cells with different configuration is simulated using transfer matrix formalism and a more intense optical electric field was observed in TI-CQDSC, leading to a higher exciton generation rate within the colloidal quantum dot solid. The TI-CQDSCs are constructed on both nonconductive glass and flexible substrates, and a maximum power conversion efficiency of 6.4% and 5.6% is achieved, respectively, comparing to that of 5.9% for the C-CQDSC. The improved performance of the top illuminated solar cell is attributed to a combination of enhanced optical electric field intensity in the colloidal quantum dot solid and superior conductivity of the transparent metal film electrode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call