Abstract

This paper is devoted to the detailed FTIR study of the adsorption, co-adsorption, and interaction of all the reagents used in NO HC-SCR process addressed to lean-burn engines with the surface of new gold catalysts based on ordered mesoporous materials. Gold was introduced into silicate and niobiosilicate matrices by the impregnation (Au/MCM-41 and Au/NbMCM-41, respectively) and via co-precipitation with siliceous and niobium sources (AuNbMCM-41). The in situ FTIR study allowed the estimation of the possible chemisorption of the reagents and their interaction towards intermediates, depending on the chemical composition of the catalyst and the way of gold introduction. It has been found that propene is chemisorbed, but not, NO, on gold species at room temperature. Chemisorbed C 3H 6 interacts with NO only in the presence of oxygen excess. Oxygen oxidizes NO to NO 2, the latter interacts with chemisorbed propene towards carboxylates (∼1570 cm −1) and NO 2 is reduced to N 2O. At higher temperatures carboxylates interact with gaseous NO to carbonate, N 2O, CO and CO 2. The presence of niobium in the NbMCM-41 matrix enhances the oxidative properties of the catalysts and as a consequence the interaction between intermediates in NO reduction with propene in the oxygen excess. The co-precipitated AuNbMCM-41 exhibits higher NOx storage properties than the impregnated one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.