Abstract

The surface acidity of different mesoporous titanium-silicates, such as well-organized hexagonally packed Ti-MMM, Ti-MMM-2, Ti-SBA-15, and amorphous TiO(2)-SiO(2) mixed oxides (aerogels and xerogels), was studied by means of FTIR spectroscopy of CO adsorbed at 80 K and CD(3)CN adsorbed at 293 K. The surface hydroxyl groups of mesoporous titanium-silicates with 2-7 wt % Ti revealed a Brönsted acidity slightly higher to that of pure silicate. TiO(2)-SiO(2) xerogels revealed the highest Brönsted acidity among the titanium-silicates studied. CO adsorption revealed two additional sites on the surface in comparison to pure silicate, characterized by nu(CO) from 2185 (high pressure) to 2178 (low pressure) cm(-1) and from 2174 (high pressure) to 2170 (low pressure) cm(-1). These bands are due to CO adsorbed on isolated titanium cations in the silica surrounding or having one Ti(4+) cation in their second coordination sphere and due to CO interactions with Ti-OH groups, respectively. CD(3)CN adsorption similarly revealed the existence of two additional sites, which were not detected for pure silicate: at 2289 cm(-1) due to CD(3)CN interaction with titanol groups and from 2306 (low pressure) to 2300 (high pressure) cm(-1) due to acetonitrile interaction with isolated framework titanium cations with probably one Ti(4+) cation in their second coordination shell. The spectroscopic results are compared with computational data obtained on cluster models of titanium-silicate with different titanium content. According to the IR data, the Ti accessibility on the surfaces for mesoporous titanium-silicates with similar Ti loading (2 wt %) was found to fall in the order TiO(2)-SiO(2) aerogel approximately TiO(2)-SiO(2) xerogel > Ti-MMM approximately Ti-MMM-2 > Ti-SBA-15. This order (except TiO(2)-SiO(2) xerogel) correlates with the catalytic activity found previously for titanium-silicates in 2,3,6-trimethylphenol oxidation with H(2)O(2).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.