Abstract

Six polyurethane-urea model hard segments (PUUMHS) were prepared by a solution method based, respectively, on two isocyanates: 4,4′-methylene-diphenyl-diisocyanate (MDI), 4,4′-methylene-dicyclohexyl diisocyanate (HMDI) and three amine chain extenders: ethylene diamine (EDA), methylene-bis-ortho-chloroaniline (MOCA), 2,4-diamino-3,5-dimethylsuphylchlorobenzene (DDSCB). FTIR was used to study their spectroscopic characterization. The main FTIR bands of the six samples were assigned and compared. It was found that most of N–H and C O are H-bonded in these PUUMHS. However, the N–H in three MDI based PUUMHS is all in the stronger H-bond state than that in their corresponding HMDI based while the C O in three HMDI based PUUMHS is all in the stronger H-bond state than that in their corresponding MDI based, respectively. In addition, the order of the H-bond strength in HMDI based PUUMHS is MOCA, DDSCB and EDA whether according to νN H or νC O band wavenumbers, which is, however, different from that in MDI based PUUMHS. Moreover, the HMDI based PUUMHS shows obvious double amide III bands while the MDI based has only prominent one. The results are discussed according mainly to the different characteristics of the three chain extenders as well as the structure difference between MDI and HMDI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.