Abstract

The variation of amorphous orientation and crystalline regularity of hard elastic polypropylene (HEPP) films during cyclic deformation and stress relaxation processes were studied using a FTIR spectrometer. The result proves entropic elasticity and shows the orientational hysteresis in the amorphous region or within the microfibrils, and also shows that the amorphous orientation increases, but that the crystalline regularity decreases with the increase of extension rate. Three spin-spin relaxation timesT 2f,T 2m, andT 2s and associated mass fractionsF f,F m, andF s of HEPP fibers were measured with a solid echo of NMR method at different elongations and after relaxation or recovery for a long time A new possible interpretation was proposed that, while the microfibrils are formed in HEPP, the medium decay component should be ascribed to inner molecules of the microfibrils, and the slow decay component to the surface molecules of the microfibrils. According to this interpretation, the results implied that subfibrillation is the main process when HEPP is stretched up to 15% strain, and that at above 15% strain thinning and lengthening of the microfibrils become the main process. Thickening of the microfibrils was found in the recovery and relaxation processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call