Abstract

It is well-known that As2O3 has significant anticancer effects, however, little is known regarding its mechanism for treating gastric cancer. Thus, we investigated biomacromolecular (DNA, proteins and lipids) changes of human gastric cancer cell line MGC803 to further understand As2O3-induced apoptosis. Conventional methods showed the increase of the apoptosis rate, the decrease of mitochondrial membrane potential (MMP), the accumulation of reactive oxygen species (ROS) and the changes of apoptotic proteins, etc. Fourier transform infrared (FTIR) microspectroscopy sensitively recognized overall biomacromolecular changes caused by the above: Peak-area ratios indicated the content/structure changes in DNA, proteins and lipids. Principle component analysis (PCA) revealed significant changes in intracellular DNA concentration and structure. This study suggests that As2O3 may exert anti-gastric cancer effect by altering intracellular biomacromolecules especially DNA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.