Abstract

The experimental capability to generate and utilize concentrated solar flux has been demonstrated at a number of facilities in the United States. To advance this research area, the National Renewable Energy Laboratory (NREL) has designed and constructed a versatile High Flux Solar Furnace (HFSF). Research is ongoing in areas of material processing, high temperature and UV enhanced detoxification, chemical synthesis, high flux optics, solar pumped lasers, and high heating rate processes. Surface modifications via concentrated solar flux, however, are currently performed without the means to accurately monitor the temperature of the surface of interest. Thermoelectric and pyrometric devices are not accurate due to limitations in surface contact and knowledge of surface emissivity, respectively, as well as interference contributed by the solar flux. In this article, we present a noncontact optical technique that simultaneously measures the directional spectral emissivity, and temperature of the surface during solar processing. A Fourier Transform Infrared (FT-IR) spectrometer is coupled to a processing chamber at NREL’s HFSF with a fiber-optic radiation transfer assembly. The system measures directional emission and hemispherical-directional reflectance in a spectral region that lacks contribution from solar flux. From these radiative property measurements during solar processing, the spectral emittance and temperature at the measurement point can be obtained. The methodology, validation measurements, and in-situ measurements during solar processing of materials are presented. Knowledge of surface temperature during solar processing is an important parameter for process control. Based on validation measurements for spectral emittance, the temperature error associated with the novel instrument is less than ±5 percent for surfaces of mid-range emittance. The error decreases for surfaces of higher emittance. This is far better than optical methods which are “lost” in terms of knowing the appropriate emittance for conversion of measured radiant intensity to temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.