Abstract

Flash-induced Fourier transform infrared (FTIR) difference spectroscopy has been used to study the water-oxidizing reactions in the oxygen-evolving centre of photosystem II. Reactions of water molecules were directly monitored by detecting the OH stretching bands of weakly H-bonded OH of water in the 3700-3500 cm(-1) region in FTIR difference spectra during S-state cycling. In the S1-->S2 transition, a band shift from 3588 to 3617 cm(-1) was observed, indicative of a weakened H-bond. Decoupling experiments using D2O:H2O (1:1) showed that this OH arose from a water molecule with an asymmetric H-bonding structure and this asymmetry became more significant upon S2 formation. In the S2-->S3, S3-->S0 and S0-->S1 transitions, negative bands were observed at 3634, 3621 and 3612 cm(-1), respectively, representing formation of a strong H-bond or a proton release reaction. In addition, using complex spectral features in the carboxylate stretching region (1600-1300 cm-(1)) as 'fingerprints' of individual S-state transitions, pH dependency of the transition efficiencies and the effect of dehydration were examined to obtain the information of proton release and water insertion steps in the S-state cycle. Low-pH inhibition of the S2-->S3, S3-->S0 and S0-->S1 transitions was consistent with a view that protons are released in the three transitions other than S1-->S2, while relatively high susceptibility to dehydration in the S2-->S3 and S3-->S0 transitions suggested the insertion of substrate water into the system during these transitions. Thus, a possible mechanism of water oxidation to explain the FTIR data is proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.