Abstract

A directly rapid quantification method for chemical oxygen demand (COD) of wastewater was established by Fourier transform infrared (FTIR) spectroscopy combined with attenuated total reflection (ATR) technology and moving window partial least squares (MWPLS) method with changeable parameters. All samples were firstly divided into the calibration set and the prediction set. And then according to the predicion effect, the optimal model was selected, and the corresponding waveband, number of adopted wavenumbers, PLS factor, root mean squared error of predication (RMSEP), correlation coefficient of predication (RP) were 3152-1109 cm-1, 1060, 8, 21.5 mg/L, and 0.981 respectively, which was obviously superior to the optimal PLS model on the whole spectral collecting region. The result shows that FTIR/ATR spectroscopy can be applied to the rapid determination of COD of wastewater, and the waveband selected by MWPLS method with changeable parameters has higher signal to noise ratio, which can effectively improve the precision of the predictive model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.