Abstract

FTIR spectroscopy and quantum chemical calculations at the RTF+MP2/6-311G** level of theory with solvation model density (SMD) corrections were used to study ion solvation and association in LiBr/acetonitrile solutions. The aim of this study was to establish the composition and geometry of the predominant ionic species solvated by acetonitrile molecules and to analyse their spectroscopic signatures. The results obtained make it possible to propose an equilibrium between Li+Br−(CH3CN)3, Li+(CH3CN)4, and anionic Br−(CH3CN)n complexes with an undetermined n value and bent coordination of the solvent molecules. The calculated wavenumbers and the geometric parameters of the solvated ionic species were found to be in excellent agreement with the experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.