Abstract

The effect of the exchangeable cations on the infrared (IR) spectra of water in MX-80 bentonite compacted from high salinary salt solution systems was studied using self-supporting film and attenuated total reflection (ATR) techniques. Na-bentonite MX-80 was saturated with homo-cationic (NaCl, KCl, CaCl 2 or MgCl 2) or hetero-cationic (mixtures of Na–, K–, Ca– and Mg–chlorides) solutions. The specimens for IR spectroscopy were prepared as self-supporting films (ssf) or compacted pastes. Differences in the wavenumbers and intensities of the structural OH group vibrations in relation to the type of the interlayer cation were found in the spectra of heated ssf. The most pronounced changes were observed for Mg-ssf, while only negligible changes occurred for K-ssf. The absorptions of water in heated Na- and K-ssf showed displacement of the stretching and bending bands to higher and lower wavenumbers, respectively, which indicates decreasing strength of H-bonding between water molecules. In contrast, for Mg-ssf the position of the stretching band of water substantially decreased on heating up to 90 °C followed by an increase upon further heating above 100 °C. The origin of these differences was discussed in terms of variations in the polarising ability of the interlayer cations influencing their hydration number. The ATR spectra of homo-cationic clay-pastes showed that the interlayer cations modify both the position and the intensity of the complex water band near 3400 cm −1. The position decrease and the intensity increase followed the same order: K +, Na +, Ca 2+, Mg 2+. Good correlation between water band position and polarising power of the cations confirmed their influence on the strength of hydrogen bonds between water molecules. Similarly, a systematic shift of the H 2O-stretching band to lower frequencies with the increasing Mg 2+ content in the samples was observed in the spectra of clay-pastes saturated with hetero-cationic chloride solutions. The intensity of the stretching band of water of both homo- and hetero-cationic pastes correlated very well with the water content obtained gravimetrically.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call