Abstract

The aim of this paper is to prove the fundamental theorem of asset pricing (FTAP) in finite discrete time with proportional transaction costs by utility maximization. The idea goes back to L.C.G. Rogers’ proof of the classical FTAP for a model without transaction costs. We consider one risky asset and show that under the robust no-arbitrage condition, the investor can maximize his expected utility. Using the optimal portfolio, a consistent price system is derived.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.