Abstract

Changes in intermolecular interactions and molecular geometry for two kinds of thermotropic cubic mesogenes, 4'-n-alkoxy-3'-nitrobiphenyl-4-carboxlic acid (denoted as ANBC-n, where n represents the number of carbon atoms in the alkoxy group) and 1,2-bis(4'-n-alkoxybenzoyl)hydrazines (BABH-n), at liquid crystal (LC) phase transitions were revealed utilizing the frequency shifts in Fourier transform infrared (FT-IR) bands as a guide. The ANBC-n and BABH-n form two kinds of bicontinuous cubic (Cub(bi)), Ia3d and Im3m types, and smectic LC phases depending on the length of the alkyl chain and temperature. In the present work, two kinds of phase transitions, i.e., smectic C ↔ Ia3d-Cub(bi) phase transition for the ANBC-16 and BABH-9 and Ia3d-Cub(bi) ↔ Im3m-Cub(bi) phase transition for the BABH-13 and BABH-16, were examined, and the experimental result was compared to the entropy changes predicted by the quasibinary picture model. In this model, it is postulated that the basic units in the BABH-n and ANBC-n, i.e., the "chain" and "core", would contribute to the phase transition entropy in different ways. A conclusion of the FT-IR result shows the adequacy of this model for the behavior of the alkyl chain. On the other hand, the FT-IR result suggested that entropy changes for the "core" predicted by this model are not directly related to changes in the intermolecular interactions between the aromatic cores of the LC molecules at the phase transitions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.