Abstract
AbstractThe effects of heat and oxygen on nylon films were studied by FT–IR spectroscopy. Nylons 6, 66 and nylons containing carbonyl groups in either the diamine or the diacid moiety were prepared. Nylon films cast on aluminum were studied in an environmental chamber under controlled conditions. The progress of chemical and physical changes was monitored by FT–IR spectroscopy. Thermal energy caused largely an increase in crystallinity due to annealing and also an increase of nonhydrogen‐bonded amide groups, which seemed to entail mainly amide groups from the amorphous region. The intensities of IR absorption bands related to the folded structure reduced as soon as heating began. The IR spectra of the carbonyl groups formed by thermal oxidation showed band shapes that indicated that the formed carbonyl groups were of many different origins. The presence of keto groups purposely inserted into the backbone chains increased the rate of oxidation. Pyrolysis of the nylons was also studied to supplement data obtained at lower temperatures.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science Part A: Polymer Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.