Abstract

Abstract Serial robots provide an ideal alternative for friction stir welding of large-scale spatial curve welding seam due to their high flexibility and large workspace. However, the low stiffness of a serial robot will definitely affect its welding accuracy. In order to enhance the stiffness of the serial robot in completing friction stir welding tasks, this paper proposes a method of constructing the hybrid stiffness index. This method uses the sigmoid function to process the dexterity or joint limit index and applies it to the stiffness index as a weight coefficient. Then the soft stiffness index with dexterity constraint or joint limit constraint is constructed respectively, and these two hybrid stiffness indices have the same dimension as the stiffness index. Subsequently, the dimension synthesis of the ZK-500 serial robot is completed by maximizing the global soft stiffness index with dexterity constraint. Finally, based on the soft stiffness index with joint limit constraint, a joint trajectory planning algorithm for the ZK-500 robot and positioner system is proposed. The result of simulations shows that the soft stiffness index with a joint limit constraint can not only ensure the stiffness performance but also improve the smoothness of the joint trajectory in the robot trajectory planning task.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.