Abstract

The Internet of Things (IoT) is an extensive system of interrelated devices equipped with sensors to monitor and track real world objects, spanning several verticals, covering many different industries. The IoT's promise is capturing interest as its value in healthcare continues to grow, as it can overlay on top of challenges dealing with the rising burden of chronic disease management and an aging population. To address difficulties associated with IoT-enabled healthcare, we propose a secure routing protocol that combines a fuzzy logic system and the Whale Optimization Algorithm (WOA) hierarchically. The suggested method consists of two primary approaches: the fuzzy trust strategy and the WOA-inspired clustering methodology. The first methodology plays a critical role in determining the trustworthiness of connected IoT equipment. Furthermore, a WOA-based clustering framework is implemented. A fitness function assesses the likelihood of IoT devices acting as cluster heads. This formula considers factors such as centrality, range of communication, hop count, remaining energy, and trustworthiness. Compared with other algorithms, the proposed method outperformed them in terms of network lifespan, energy usage, and packet delivery ratio by 47%, 58%, and 17.7%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.