Abstract

We consider the problem of data collection from a continental-scale network of mobile sensors, specifically applied to wildlife tracking. Our application constraints favor a highly asymmetric solution, with heavily duty-cycled sensor nodes communicating with a network of powered base stations. Individual nodes move freely in the environment, resulting in low-quality radio links and hot-spot arrival patterns with the available data exceeding the radio link capacity. We propose a novel scheduling algorithm, κ-Fair Scheduling Optimization Model (κ-FSOM), that maximizes the amount of collected data under the constraints of radio link quality and energy, while ensuring a fair access to the radio channel. We show the problem is NP-complete and propose a heuristic to approximate the optimal scheduling solution in polynomial time. We use empirical link quality data to evaluate the κ-FSOM heuristic in a realistic setting and compare its performance to other heuristics. We show that κ-FSOM heuristic achieves high data reception rates, under different fairness and node lifetime constraints.KeywordsLink schedulingOptimizationFairnessEnergyMobile Sensor Network

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.