Abstract

Growth factors modulate germ line stem cell self-renewal and differentiation behavior. We investigate the effects of Igf3, a fish-specific member of the igf family. Fsh increased in a steroid-independent manner the number and mitotic index of single type A undifferentiated spermatogonia and of clones of type A differentiating spermatogonia in adult zebrafish testis. All 4 igf gene family members in zebrafish are expressed in the testis but in tissue culture only igf3 transcript levels increased in response to recombinant zebrafish Fsh. This occurred in a cAMP/protein kinase A-dependent manner, in line with the results of studies on the igf3 gene promoter. Igf3 protein was detected in Sertoli cells. Recombinant zebrafish Igf3 increased the mitotic index of type A undifferentiated and type A differentiating spermatogonia and up-regulated the expression of genes related to spermatogonial differentiation and entry into meiosis, but Igf3 did not modulate testicular androgen release. An Igf receptor inhibitor blocked these effects of Igf3. Importantly, the Igf receptor inhibitor also blocked Fsh-induced spermatogonial proliferation. We conclude that Fsh stimulated Sertoli cell production of Igf3, which promoted via Igf receptor signaling spermatogonial proliferation and differentiation and their entry into meiosis. Because previous work showed that Fsh also released spermatogonia from an inhibitory signal by down-regulating anti-Müllerian hormone and by stimulating androgen production, we can now present a model, in which Fsh orchestrates the activity of stimulatory (Igf3, androgens) and inhibitory (anti-Müllerian hormone) signals to promote spermatogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.