Abstract

During the two legs of cruise MSM34 of R/V MARIA S. MERIAN regional 2D seismic surveying, high resolution 2D and 3D seismic imaging, geo-chemical sampling, heatflow measurements and long-term piezometer installations were undertaken. A grid of 28 2D seismic profiles was collected across the palaeo Danube delta. A number of inactive and partly buried channel systems could be mapped. Most of them were underlain by one or more bottom simulation reflectors (BSR). Based on the seismic brute stack images and the limits of the MeBo drilling device a prospective channel system with indications for possible gas hydrate formation at shallow depth (BSR, inverted strong amplitudes) could be identified in about 1500 m water depth. High resolution 2D seismic and 3D P-Cable seismic were used together with OBS deployments in order to allow structural mapping and physical description of the channel infill. Heatflow measurements and geochemical analyses of gravity and multi corer samples accompany these investigations. Neither the multibeam water column images nor Parasound records show any evidence of flares (gas bubbles in the water column) in this working area suggesting a well sealed hydrate reservoir. Active gas expulsion from the seafloor was observed at about 200 m water depth circling around a slump area. The base plane of the failed sediment volume builds the current seafloor at about 600 m to 700 m water depth. On regional 2D seismic profiles a BSR has been mapped underneath the slope failure with unexpectedly strong upward bending. High resolution 2D and 3D P-Cable seismic investigations with complementary OBS deployment will allow imaging the BSR outline. Moreover velocity analyses, heatflow measurements and geo-chemical samples will be available for a detailed description of hydrate distribution and sediment parameters. In a third working area high resolution 2D seismic reflection profiles were acquired across a fully buried channel system. Together with the regional seismic lines slope failure of the channel fill material can be studied across the slope extension of the system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call