Abstract

AbstractThe objective of this work was to study the frying stability of soybean oil (SBO) with reduced linoleate (18∶2) and linolenate (18∶3) and elevated oleate (18∶1) contents. High‐oleate SBO [HO SBO, 79% oleic acid (OA)] and a control (conventional SBO, 21.5% OA) were tested as is, as well as blended in different ratios to make three blended oils containing 36.9, 50.7, and 64.7% OA, abbreviated as 37%OA, 51%OA, and 65%OA, respectively. In addition, a low‐linolenate (LL) SBO containing 1.4% 18∶3 and 25.3% 18∶1 was tested. Bread cubes (8.19 cm3) were fried in each of 18 oils (6 treatments×3 replicates). We hypothesized that stability indicators would be indirectly related to the total 18∶2 plus 18∶3 percentages and/or the calculated oxidizability. In general, the results were fairly predictable based on total 18∶2 and 18∶3 concentrations. The overall frying stability of the six oil treatments, from the best to the poorest, was: 79%OA, 65%OA, 51%OA, LL≥37%OA, and the control, with respective total compositions for 18∶2 plus 18∶3 of 10.3, 23.6, 36.3, 59.6, 48.9, and 62.8%. The greatly reduced concentration of 18∶3 in the LL SBO made it more stable than the 37%OA, even though the combined composition of 18∶2 and 18∶3 of LL was greater than that of the 37%OA. Blending conventional SBO with HO SBO had a profound effect on the oxidative stability index and color of the blended oils, but the values were not linearly predictable by the percentage of control in the blended oil. Other stability indices, including calculated oxidizability, calculated iodine value, conjugated dienoic acid value, and viscosity, changed in linear response to an increased proportion of the control in the blends.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call