Abstract

Assessing the role of cannabinoid (CB) receptors in behavior is relevant given the trend toward the legalization of medicinal and recreational marijuana. The present research aims at bridging a gap in our understanding of CB-receptor function in animal models of frustrative nonreward. These experiments were designed to (1) determine the effects of chronic administration of the nonselective CB1-receptor agonist WIN 55,212-2 (WIN) on reward downshift in rats and (2) determine whether the effects of chronic WIN were reducible to acute effects. In Experiment 1, chronic WIN (7 daily injections, 10 mg/kg, ip) accelerated the recovery of consummatory behavior after a 32-to-4% sucrose downshift relative to vehicle controls. In addition, chronic WIN eliminated the preference for an unshifted lever when the other lever was subject to a 12-to-2 pellet downshift in free-choice trials, but only in animals with previous experience with a sucrose downshift. In Experiment 2, acute WIN (1 mg/kg, ip) reduced consummatory behavior, but did not affect recovery from a 32-to-4% sucrose downshift. The antagonist SR 141716A (3 mg/kg, ip) also failed to interfere with recovery after the sucrose downshift. In Experiment 3, acute WIN administration (1 mg/kg, ip) did not affect free-choice behavior after a pellet downshift, although it reduced lever pressing and increased magazine entries relative to vehicle controls. The effects of chronic WIN on frustrative nonreward were not reducible to acute effects of the drug. Chronic WIN treatment in rats, like chronic marijuana use in humans, seems to increase resistance to the effects of frustrative nonreward.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call