Abstract
We report the formation of stable two-dimensional clusters consisting of long-range-interacting colloidal particles with predefined magnetic moments. The symmetry and arrangement of the particles within the cluster are imposed by the magnetic frustration. By satisfying the criteria of stability, a series of magic number clusters is formed. The magic clusters are close packed and have compensating magnetic moments and chirality. Thus, the system can be regarded as a classical mesoscopic model for spin arrangements in two-dimensional triangular antiferromagnets, although the exact nature of the interactions between the macroscopic magnetic moments is different.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.