Abstract

For every matrix product state (MPS) one can always construct a so-called parent Hamiltonian. This is a local, frustration free, Hamiltonian which has the MPS as ground state and is gapped. Whenever that parent Hamiltonian has a degenerate ground state space (the so-called non-injective case), we construct another ‘uncle’ Hamiltonian which is also local and frustration free, has the same ground state space, but is gapless, and its spectrum is \({\mathbb{R}^+}\). The construction is obtained by linearly perturbing the matrices building up the state in a random direction, and then taking the limit where the perturbation goes to zero. For MPS where the parent Hamiltonian has a unique ground state (the so-called injective case) we also build such uncle Hamiltonian with the same properties in the thermodynamic limit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call