Abstract

We have created and studied artificial magnetic quasicrystals based on Penrose tiling patterns of interacting nanomagnets that lack the translational symmetry of spatially periodic artificial spin ices. Vertex-level degeneracy and frustration induced by the network topology of the Penrose pattern leads to a low energy configuration that we propose as a ground state. Topologically induced emergent frustration means that this ground state cannot be constructed from vertices in their ground states. It has two parts, a quasi-one-dimensional rigid "skeleton" that spans the entire pattern and is capable of long-range order, and "flippable" clusters of macrospins within it. These lead to macroscopic degeneracy for the array as a whole. Magnetic force microscopy imaging of Penrose tiling arrays revealed superdomains that are larger for more strongly coupled arrays. The superdomain size is larger after AC-demagnetisation and especially after annealing the array above its blocking temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call