Abstract

The structurally simplest high-temperature superconductor FeSe exhibits an intriguing superconducting nematic paramagnetic phase with unusual spin excitation spectra that are different from typical spin waves; thus, determining its effective magnetic exchange interactions is challenging. Here we report neutron scattering measurements of spin fluctuations of FeSe in the tetragonal paramagnetic phase. We show that the equal-time magnetic structure factor, $\mathcal{S}(\mathbf{Q})$, can be effectively modeled using the self-consistent Gaussian approximation calculation with highly frustrated nearest-neighbor (${J}_{1}$) and next-nearest-neighbor (${J}_{2}$) exchange couplings, and very weak further neighbor exchange interaction. Our results elucidate the frustrated magnetism in FeSe, which provides a natural explanation for the highly tunable superconductivity and nematicity in FeSe and related materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.