Abstract

Phosphoryl nitride (NPO) is a highly reactive intermediate, and its chemistry has only been explored under matrix isolation conditions so far. Here we report the synthesis of an anthracene (A) and phosphoryl azide based molecule (N3P(O)A) that acts as a molecular synthon of NPO. Experimentally, N3P(O)A dissociates thermally with a first-order kinetic half-life that is associated with an activation enthalpy of ΔH⧧ = 27.5 ± 0.3 kcal mol-1 and an activation entropy of ΔS⧧ = 10.6 ± 0.3 cal mol-1 K-1 that are in good agreement with calculated DLPNO-CCSD(T)/cc-pVTZ//PBE0-D3(BJ)/cc-pVTZ energies. In solution N3P(O)A undergoes Staudinger reactivity with tricyclohexylphosphine (PCy3) and subsequent complexation with tris(pentafluorophenyl)borane (B(C6F5)3, BCF) to form Cy3P-NP(A)O-B(C6F5)3. Anthracene is cleaved off photochemically to form the frustrated Lewis pair (FLP) stabilized NPO complex Cy3P⊕-N═P-O-B⊖(C6F5)3. An intrinsic bond orbital (IBO) analysis suggests that the adduct is zwitterionic, with a positive and negative charge localized on the complexing Cy3P and BCF, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call