Abstract

Practical application of direct methanol fuel cell (DMFC) technology is greatly hindered by the strong dependence of anodic methanol oxidation reaction (MOR) on precious Pt based catalyst and the unsatisfying performance of Pt. Therefore, increasing the utilization and the catalytic performance of Pt toward MOR in DMFC is urgent. Here in this work, CeO2 is modified via a plasma-phosphating combing strategy and is invited as Frustrated Lewis Pair to assist the catalytic MOR process on Pt sites. Simultaneously, the plasma-phosphating combing strategy leads to negatively charged sites on CeO2 surface, which can be functioned as host for Pt anchoring, facilitating the even dispersion of Pt nanocrystals. Besides, this strategy also has an effect on the Ce3+/Ce4+ ratio and vacancy oxygen ratio on CeO2 surface, which are critical to the adsorbed OH generation and anti-CO poisoning ability, thus boosting the MOR catalytic activity of Pt. DMFC device therefore exhibits ca. 30% maximum power density enhancement compared with the commercial Pt/C based DMFC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call