Abstract

AbstractThe stabilization of silicon(II) and germanium(II) dihydrides by an intramolecular Frustrated Lewis Pair (FLP) ligand, PB, iPr2P(C6H4)BCy2 (Cy=cyclohexyl) is reported. The resulting hydride complexes [PB{SiH2}] and [PB{GeH2}] are indefinitely stable at room temperature, yet can deposit films of silicon and germanium, respectively, upon mild thermolysis in solution. Hallmarks of this work include: 1) the ability to recycle the FLP phosphine‐borane ligand (PB) after element deposition, and 2) the single‐source precursor [PB{SiH2}] deposits Si films at a record low temperature from solution (110 °C). The dialkylsilicon(II) adduct [PB{SiMe2}] was also prepared, and shown to release poly(dimethylsilane) [SiMe2]n upon heating. Overall, this study introduces a “closed loop” deposition strategy for semiconductors that steers materials science away from the use of harsh reagents or high temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call