Abstract

A wide range of organic pollutants in industrial effluents, agricultural runoff, and domestic discharges are exacerbating water scarcity, leading to water-borne ailments, and adversely affecting the marine ecosystem and biodiversity. The efficient, sustainable, and cost-effective materials need to be addressed urgently for the removal of organic pollutants. Herein, ultra-light (0.018 g.cm−3) and highly porous (96.4%) composite aerogel is prepared by gelatinization of graphene oxide with fruit waste-derived cellulose. The macroscopic porosity generated by interconnecting cellulosic skeleton and graphene oxide sheets via hydrogen bonding network provided ample avenues for transport and diffusion of organic dyes-enriched wastewater throughout the cellulose-graphene oxide composite aerogel (CGA). Consequently, organic dyes are efficiently adsorbed by easily accessible surface sites distributed throughout the CGA. The size, charge, and chemical structure of organic dyes along with textural features and accessible surface active sites of CGA governed the adsorption process. The spectroscopic analyses based on FTIR, Raman, and XPS measurements suggest electrostatic, n-π, π-π, cation-π interactions, dipole–dipole hydrogen, and Yoshida hydrogen linkages as major interactive pathways for the adsorption of organic dyes by the CGA. Moreover, the composite aerogel furnished an excellent recyclability for the adsorptive removal of organic pollutants from wastewater. The present work promises the potential of 2D nanostructured layered materials and fruit-waste-derived composite aerogels for sustainable utilization in wastewater treatment, which can be an excellent step towards water security.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.