Abstract

Although fleshy fruit species are economically important worldwide and crucial for human nutrition, the regulation of their fruit metabolism remains to be described finely. Fruit species differ in the origin of the tissue constituting the flesh, duration of fruit development, coordination of ripening changes (climacteric vs. non-climacteric type) and biochemical composition at ripeness is linked to sweetness and acidity. The main constituents of mature fruit result from different strategies of carbon transport and metabolism. Thus, the timing and nature of phloem loading and unloading can largely differ from one species to another. Furthermore, accumulations and transformations of major soluble sugars, organic acids, amino acids, starch and cell walls are very variable among fruit species. Comparing fruit species therefore appears as a valuable way to get a better understanding of metabolism. On the one hand, the comparison of results of studies about species of different botanical families allows pointing the drivers of sugar or organic acid accumulation but this kind of comparison is often hampered by heterogeneous analysis approaches applied in each study and incomplete dataset. On the other hand, cross-species studies remain rare but have brought new insights into key aspects of primary metabolism regulation. In addition, new tools for multi-species comparisons are currently emerging, including meta-analyses or re-use of shared metabolic or genomic data, and comparative metabolic flux or process-based modeling. All these approaches contribute to the identification of the metabolic factors that influence fruit growth and quality, in order to adjust their levels with breeding or cultural practices, with respect to improving fruit traits.

Highlights

  • Fresh fruits (866 Mt worldwide in 20161) and their derived products are economically important

  • The use of introgression lines between a cultivated and a wild fruit species will not be considered in this paragraph, a range of interesting works contributed to decipher the complexity of sugar or carboxylic acid metabolism, especially in tomato

  • The profiling of volatile compounds in nine fruit species revealed that differences were mostly qualitative, with only seven common compounds (PortoFigueira et al, 2015). Classical multivariate analyses such as principal component analysis (PCA), or more elaborated ones such as STATIS, which handles multiple data tables, are being used to mine metabolite data for comparisons between species. This latter statistical analysis was used at the fruit level to compare five species based on the pattern of 16 primary metabolites, and showed that climacteric species most significantly differed from non-climacteric ones with respect to the metabolism of some sugars and amino acids (Klie et al, 2014)

Read more

Summary

Introduction

Fresh fruits (866 Mt worldwide in 20161) and their derived products are economically important. Sucrose is the main photoassimilate transported in phloem in most fruit species such as cultivated tomato, grape, sweet orange and cultivated strawberry (Swanson and El-Shishiny, 1958; Rennie and Turgeon, 2009; Fu et al, 2011; Hijaz and Killiny, 2014).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call