Abstract
The gut microbiota has been implicated in glucose intolerance and its progression towards type-2 diabetes mellitus (T2DM). Relevant randomized clinical trial with prebiotic intervention was inadequate. We sought to evaluate the impact of fructooligosaccharides (FOS) and galactooligosaccharides (GOS) on glycemia during oral glucose tolerance test (OGTT) and intestinal microbiota. A randomized double-blind cross-over study was performed with 35 adults treated with FOS and GOS for 14 days (16 g/day). Faeces sampling, OGTT and anthropometric parameters were performed. Short-term intake of high-dose prebiotics had adverse effect on glucose metabolism, as in FOS intervention demonstrated by OGTT (P < 0.001), and in GOS intervention demonstrated by fasting glucose (P < 0.05). A significant increase in the relative abundance of Bifidobacterium was observed both in FOS and GOS group, while the butyrate-producing bacteria like Phascolarctobacterium in FOS group and Ruminococcus in GOS group were decreased. A random forest model using the initial microbiota was developed to predict OGTT levels after prebiotic intervention with relative success (R = 0.726). Our study alerted even though FOS and GOS increased Bifidobacterium, they might have adverse effect on glucose metabolism by reducing butyrate-producing microbes. Individualized prebiotics intervention based on gut microbiome needs to be evaluated in future.
Highlights
IntroductionAn intervention study with fructooligosaccharides (FOS) in obese women resulted in the increase of Bifidobacterium and Faecalibacterium prausnitzii but without obvious effect on glucose metabolism[13]
Our recent meta-analysis indicated that the benefit of inulin-type fructans (ITF) for reducing fasting glucose was only demonstrated in T2DM14
The results demonstrated that Bacteroides, Faecalibacterium, Clostridium, Prevotella, Ruminococcus, Veilllonellaceae, Phascolarctobacterium and Bifidobacterium were all correlated with the oral glucose tolerance test (OGTT) outcomes
Summary
An intervention study with fructooligosaccharides (FOS) in obese women resulted in the increase of Bifidobacterium and Faecalibacterium prausnitzii but without obvious effect on glucose metabolism[13]. Some researches using high-throughput sequencing have demonstrated that gut microbiota could be used to identify those subjects who would benefit from specific diet intervention[16,17]. To the best of our knowledge, there has been no report on the effect of FOS and GOS on human gut microbiome using the whole community profiling techniques. The aim of our exploratory study was to assess the impact of two different prebiotics FOS and GOS on glucose metabolism and gut microbiome in healthy subjects, to highlight the contribution of gut microbial changes in modulating host glucose metabolism by nutrition intervention
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.