Abstract

Wheat kernels contain fructans, fructose based oligosaccharides with prebiotic properties, in levels between 2 and 35 weight % depending on the developmental stage of the kernel. To improve knowledge on the metabolic pathways leading to fructan storage and degradation, carbohydrate fluxes occurring during durum wheat kernel development were analyzed. Kernels were collected at various developmental stages and quali-quantitative analysis of carbohydrates (mono- and di-saccharides, fructans, starch) was performed, alongside analysis of the activities and gene expression of the enzymes involved in their biosynthesis and hydrolysis. High resolution HPAEC-PAD of fructan contained in durum wheat kernels revealed that fructan content is higher at the beginning of kernel development, when fructans with higher DP, such as bifurcose and 1,1-nystose, were mainly found. The changes in fructan pool observed during kernel maturation might be part of the signaling pathways influencing carbohydrate metabolism and storage in wheat kernels during development. During the first developmental stages fructan accumulation may contribute to make kernels more effective Suc sinks and to participate in osmotic regulation while the observed decrease in their content may mark the transition to later developmental stages, transition that is also orchestrated by changes in redox balance.

Highlights

  • IntroductionWheat is one of the primary grains consumed by humans, with about 700 million tons being annually harvested (Charmet, 2011)

  • Cereals are basic components of the human diet

  • At 12–15 days after anthesis (DAA) the kernels were at the milky phase, while the dehydration process started at 28 DAA

Read more

Summary

Introduction

Wheat is one of the primary grains consumed by humans, with about 700 million tons being annually harvested (Charmet, 2011). Interest in cereals as a source of bioactive and functional molecules has increased. The enrichment of pasta and other cereal-derived foods with immature kernels is an interesting prospect in the field of functional foods (Paradiso et al, 2006; Casiraghi et al, 2013). Kernel maturation is a complex process controlled by several factors, both of endogenous and exogenous origin (hormones, photosynthetic efficiency, macro- and micronutrient availability, pests, etc.) (Sabelli and Larkins, 2009). The various stages of kernel maturation show almost the same trend over time, irrespective of the variable climatic conditions and the geographical areas of cultivation (Simmonds and O’Brien, 1981)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.