Abstract
Förster resonance energy transfer (FRET) by using fluorescent carbon dots (CDs) as energy donors shows potential for biosensing and bioimaging. However, it remains underused and underestimated for CDs as a building block for FRET owing to the low efficiency and complex operation originating from the surface modification of CDs. To overcome these limitations, herein we develop a novel FRET soft nanoball (fretSNB) in which thousands of green CDs and black hole quencher 2 (BHQ-2) dyes are loaded, and FRET occurs from CDs to BHQ-2 dyes with the consequence of effective fluorescence quenching. These fretSNBs can be ruptured in the presence of phospholipase A2 (PLA2) released in a process of duplex-specific nuclease (DSN)-assisted target recycling amplification (TRA), making the fluorescence of CDs recovered. Thus, a dual amplification strategy is successfully developed for amplified detection of microribonucleic acids (miRNAs) in the concentration range 0.025-10 nM with a limit of detection (3σ) reaching 16.5 pM which is about 515 times lower than without fretSNBs. In addition, the developed strategy exhibits high selectivity for discrimination of a single nucleotide difference and capability to detect miRNAs extracted from cells, suggesting excellent potential in biomedical analysis and clinical diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.