Abstract

Regulated excited state energy and charge transfer play a pivotal role in nanoscale semiconductor device performance for efficient energy harvesting and optoelectronic applications. Herein, we report the influence of Förster resonance energy transfer (FRET) on the excited-state dynamics and charge transport properties of metal halide perovskite nanocrystals (PNCs), CsPbBr3, and its anion-exchanged counterpart CsPbCl3 with CdSe/ZnS quantum dots (QDs). We report a drop in the FRET efficiency from ∼85% (CsPbBr3) to ∼5% (CsPbCl3) with QDs, inviting significant alteration in their charge transport properties. Using two-probe measurements we report substantial enhancement in the current for the blend structure of PNCs with QDs, originating from the reduced trap sites, compared to that of the pristine PNCs. The FRET-based upshot in the conduction mechanism with features of negative differential resistance and negligible hysteresis for CsPbBr3 PNCs can add new directions to high performance-based photovoltaics and optoelectronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.