Abstract
3D reconstruction of the intra-operative scenes provides precise position information which is the foundation of various safety related applications in robot-assisted surgery, such as augmented reality. Herein, a framework integrated into a known surgical system is proposed to enhance the safety of robotic surgery. In this paper, we present a scene reconstruction framework to restore the 3D information of the surgical site in real time. In particular, a lightweight encoder–decoder network is designed to perform disparity estimation, which is the key component of the scene reconstruction framework. The stereo endoscope of da Vinci Research Kit (dVRK) is adopted to explore the feasibility of the proposed approach, and it provides the possibility for the migration to other Robot Operating System (ROS) based robot platforms due to the strong independence on hardware. The framework is evaluated using three different scenarios, including a public dataset (3018 pairs of endoscopic images), the scene from the dVRK endoscope in our lab as well as a self-made clinical dataset captured from an oncology hospital. Experimental results show that the proposed framework can reconstruct 3D surgical scenes in real time (25 FPS), and achieve high accuracy (2.69 ± 1.48 mm in MAE, 5.47 ± 1.34 mm in RMSE and 0.41 ± 0.23 in SRE, respectively). It demonstrates that our framework can reconstruct intra-operative scenes with high reliability of both accuracy and speed, and the validation of clinical data also shows its potential in surgery. This work enhances the state of art in 3D intra-operative scene reconstruction based on medical robot platforms. The clinical dataset has been released to promote the development of scene reconstruction in the medical image community.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.