Abstract

In the ultimate failure mode of columns in RC structures under seismic load, the longitudinal reinforcement generally suffers from severe buckling due to the axial compressive load, spalling of concrete cover and dilation of concrete core. Proper configuration of RC columns to postpone or prevent the buckling phenomenon can enhance the seismic performance and make full use of the strength of steel reinforcement. In this paper, a new concept and configuration of FRP-confined concrete core-encased rebar (FCCC-R) for RC columns is proposed. The concrete surrounded the longitudinal rebar is confined by an FRP tube, which can prevent the rebar from premature buckling. The axial compressive behavior of the hybrid bar considering different parameters, including the slenderness ratio, FRP tube diameter, mortar strength, and bar position was studied experimentally. Furthermore, finite element (FE) simulation was carried out and calibrated by test results. Based on the FE model, additional discussion and a parametric study was performed. Finally, the minimum FRP tube diameter required for the FCCC-R considering the compressive behavior enhancement effect was calculated, and design curves for 3 types of steel bars with nominal yield strengths of 400 MPa, 800 MPa, and 1100 MPa were proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.