Abstract

Concrete-filled steel tubes (CFTs) are widely used as columns in many structural systems. In CFTs, inward buckling deformations of the steel tube are prevented by the concrete core, but degradation in steel confinement, strength and ductility can still result from outward local buckling. To overcome this deficiency of CFTs, CFTs can be confined with fibre-reinforced polymer (FRP) wraps to suppress outward local buckling deformations. This paper is concerned with the behaviour and modelling of FRP-confined concrete-filled steel tubular columns subjected to cyclic axial compression. Results from two series of cyclic axial compression tests on CCFTs are presented and discussed. A cyclic stress–strain model for confined concrete in CCFTs is also proposed and is shown to compare well with the test results. The proposed stress–strain model can be employed in the modelling of CCFTs under seismic loadings in future studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.