Abstract

Abstract Frozen soil distributed over alpine cold regions causes obvious changes in the soil hydrothermal regime and influences the water–heat exchanges between land and atmosphere. In this study, by comparing the effects of snow cover anomalies and frozen soil thawing anomalies on the soil hydrothermal regime, the impact of the frozen soil thawing anomalies in spring on precipitation in early summer over the Tibetan Plateau (TP) was investigated via diagnostic analysis and model simulations. The results show that a delay (advance) in the anomalies of frozen soil thawing in spring can induce distinct cold (warm) anomalies in the soil temperature in the eastern TP. These soil temperature cold (warm) anomalies further weaken (enhance) the surface diabatic heating over the mideastern TP; meanwhile, the anomalies in the western TP are inconspicuous. Compared to the albedo effect of snow cover anomalies, impacts of frozen soil thawing anomalies on soil hydrothermal regime and surface diabatic heating can persist longer from April to June. Corresponding to the anomalous delay (advance) of frozen soil thawing, the monsoon cell is weakened (enhanced) over the southern and northern TP, resulting in less (more) water vapor advection over the eastern TP and more (less) water vapor advection over the southwestern TP. This difference in water vapor advection induces a west–east reversed pattern of precipitation anomalies in June over the TP. The results have potential for improving our understanding of the interactions between the cryosphere and climate in cold regions. Significance Statement Frozen soil and snow are widely distributed over alpine and high-latitude cold regions, and their feedbacks to climate have attracted much attention. The purpose of this study is to investigate the role of frozen soil in effects of snow cover anomalies on surface diabatic heating and its feedback to subsequent precipitation over the Tibetan Plateau. The results highlight that frozen soil modulates the effect of snow cover anomalies on the soil hydrothermal regime from April to June and interseasonal variations of frozen soil thawing anomaly zones result in a thermal contrast between the western and eastern Tibetan Plateau, which further lead to a reversed pattern of early summer precipitation anomalies over the Tibetan Plateau. These findings emphasize the role of frozen soil in land–atmosphere interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call