Abstract

A directional freezing and frozen polymerization method is developed to prepare crosslinked aligned porous polymers with improved mechanical stability. Monomer solutions are directionally frozen in liquid nitrogen to orientate the growth of solvent crystals. The frozen samples are polymerized by UV irradiation. The solvent is removed under vacuum at room temperature to produce aligned porous structure. The mechanical stability is improved by two orders of magnitude compared to the usually freeze-dried porous materials. The materials are modified with graphene and a conducting polymer to achieve conductivity at 1.9 × 10−4 S cm−1 and 5.2 × 10−6 S cm−1, with the stable aligned pore structures maintained. The aligned porous monolith is also assessed by high performance liquid chromatography (HPLC), showing fast separation of hydrocarbon compounds with low back pressure at 59 bar.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.