Abstract
The method of frozen natural orbital (FNO) basis set truncation for coupled-cluster theory is described. Numerical comparisons of the FNO potential energy surfaces of a group of small molecules at the CCSD(T) level in DZP, cc-pVTZ, cc-pVQZ bases show that truncation of up to 50% of the virtual space yields CC correlation energies that are accurate to 90 or 95% when added to the full MBPT(2) basis result. The FNO truncation method is also applied to dimethylnitramine (DMNA): both the equilibrium structure and dimer interactions, yielding results at the CCSD(T) level in both a DZP and cc-pVTZ basis set that agree with literature values. CCSD(T) calculations at two possible equilibrium structures of 1,3,5-trinitrohexahydro-1,3,5-triazine (RDX) in a truncated DZP basis are also reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Collection of Czechoslovak Chemical Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.