Abstract

The discrete nonlinear Schrödinger (DNLS) equation is a Hamiltonian model displaying an extremely slow relaxation process when discrete breathers appear in the system. In (Iubini et al 2019 Phys. Rev. Lett. 122 084102), it was conjectured that the frozen dynamics of tall breathers is due to the existence of an adiabatic invariant (AI). Here, we prove the conjecture in the simplified context of a unidirectional DNLS equation, where the breather is ‘forced’ by a background unaffected by the breather itself. We first clarify that the nonlinearity of the breather dynamics and the deterministic nature of the forcing term are both necessary ingredients for the existence of a frozen dynamics. We then derive perturbative expressions of the AI by implementing a canonical perturbation theory and via a more phenomenological approach based on the estimate of the energy flux. The resulting accurate identification of the AI allows revealing the presence and role of sudden jumps as the main breather destabilization mechanism, with an unexpected similarity with Lévy processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.