Abstract
AbstractThe onset of the aggregation process of frozen droplets was investigated in laboratory settings. The experiments were conducted in a cloud chamber controlled at temperatures cooler than −40°C, where pure water droplets freeze spontaneously without the need for ice nucleating particles. We present laboratory evidence supporting that the aggregation process can occur for frozen droplet sizes around 10 μm in diameter and at concentrations observed in the cloud chamber of 70 ± 20 cm−3, which can be found in some regions of anvil cirrus. The characteristics and morphology of the aggregates were examined in detail. Additional experiments performed with electrically charged droplets show that the aggregation processes can be significantly accelerated, suggesting that the mechanism of collision and adhesion could be related to electrical forces generated by different charge distributions or dipole interactions between the interacting ice surfaces. The current work aims at advancing our fundamental understanding of the aggregation process of frozen droplets, which is necessary for understanding the cloud microphysical processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.