Abstract

SummaryDuring the past two decades, significant spread of the perennial weeds Juncus effusus (soft rush) and Juncus conglomeratus (compact rush) in coastal parts of Norway seems to have coincided with an observed rise in winter temperatures. This study investigated the frost tolerance (LT50) and effects of moderate frost exposure on rush plant regrowth over time during the period late November to late winter/spring, and photosynthetic activity in late winter/spring. Juncus effusus and J. conglomeratus of physiologically young age (seedlings) displayed similar high frost tolerance (LT50) and did not differ significantly in regenerative ability following prolonged frost exposure. Regrowth capacity generally increased during winter and when stress conditions increased, shoot formation was prioritised over total biomass production. Maximum quantum efficiency of photosystem II (Fv/Fm) and performance index of photosystem II (PI) were high in late winter/spring, with J. effusus showing higher values than J. conglomeratus. Green, photosynthetically active shoots, which facilitate accumulation of carbohydrates during autumn and even in winter, may provide Juncus spp. with substantial competitiveness in late winter and spring. The results revealed that the dominance of J. effusus over J. conglomeratus in pastures and leys is not due to major differences in winter survival parameters, but probably the higher photosynthetic efficiency observed in J. effusus. Generally higher temperatures during winter and lower frost kill may be contributing to the current increase in rush infestation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.