Abstract

Post-flowering frosts cause appreciable losses to the Australian chickpea industry. The Northern Grains Region (NGR) of Australia, which accounts for nearly 95% of chickpea production in Australia, is frequently subjected to such events. The objective of this study was to map frost risk in chickpea in the NGR and develop strategies to minimise the impacts of such risk. The Agricultural Production System Simulator (APSIM) modelling framework was used to determine spatial and temporal trends in post-flowering frost risk. The NGR could be divided into six broad sub-regions, each delineating locations with similar frost risk. The risk was nearly two to three times greater in the Southern Downs and Darling Downs sub-regions as compared to the Central Queensland Highlands, Dawson Callide, New South Wales, and Northern New South Wales–Western Downs sub-regions. There was an increasing trend in the frequency of frost events in the Southern Downs and New South Wales sub-regions, and a decreasing trend in the Central Queensland Highlands and Dawson Callide sub-regions, consistent with the changing climate of the NGR. In each sub-region, frost risk declined with delayed sowings, but such sowings resulted in simulation of reduced water limited yield potential (unfrosted) as well. The model output was also used to compute 10, 30, 50, and 70% probabilities of the last day of experiencing −3 to 2 °C minimum temperatures and identify the earliest possible sowings that would avoid such temperatures after flowering. Choosing the earliest sowing times with a 30% frost risk could help increase overall yields in environments with high frost risk. Simulations involving genotype x environment x management interactions suggested additional opportunities to minimise frost losses through the adoption of particular cultivars of differing phenology and the use of different agronomy in various environments of the NGR. The study indicates that there is considerable variation in frost risk across the NGR and that manipulating flowering times either through time of sowing or cultivar choice could assist in minimising yield losses in chickpea due to frost.

Highlights

  • The Australian winter grains industry, to which chickpea is an important contributor, loses around $360 million annually to post-flowering frosts

  • Over 95% of the total chickpea production in Australia occurs in the Northern Grains Region (NGR) spread over northern New South

  • The Agricultural Production Systems Simulator (APSIM) modelling framework, which consists of several farming systems modules developed in Australia and elsewhere to simulate a wide range of complex systems, was used to map post-flowering frost risk

Read more

Summary

Introduction

The Australian winter grains industry, to which chickpea is an important contributor, loses around $360 million annually to post-flowering frosts We define these frost events occurring after the commencement of flowering when minimum temperatures are

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.