Abstract

AbstractA bionic super‐hydrophobic surface has a multiple micro‐nano‐binary structure (MNBS) similar to the lotus leaf surface microstructure. This kind of surface has a contact angle of water greater than 150° and a roll angle smaller than 5°. In this paper, the frost deposition phenomena on a bionic super‐hydrophobic surface were observed. The surface has many micro bumps and its contact angle is 162°. The formation of water droplets, the droplet freezing process, the formation of initial frost crystals and the frost layer structure on a cold bionic super‐hydrophobic surface under natural convection conditions were closely observed. The frost layer structure formed on the super‐hydrophobic surface shows remarkable differences to that on a plain copper surface: the structure is weaker, looser, thin, and easily removed and most importantly, it is of a very special pattern, a pattern similar to a chrysanthemum, a frost layer structure that has not been reported before to the best of the present authors knowledge. The experimental results also show that a super‐hydrophobic surface has a strong ability to restrain frost growth. The frost deposition on this bionic surface was delayed 55 minutes when compared with a plain copper surface under the conditions of a cold plate temperature of −10.1°C, air temperature of 18.4°C, and relative humidity of 40%. A theoretical analysis was also presented to explain the observed phenomena. © 2008 Wiley Periodicals, Inc. Heat Trans Asian Res, 37(7): 412–420, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20216

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call