Abstract

Formation of frost on outdoor evaporators poses a significant challenge for air source heat pumps operating in cold climates. It is widely recognized that uneven air-flow across an evaporator can have a negative impact on both the evaporator’s performance and the overall efficiency of the heat pump. This study investigates the influence of non-uniform air-flow distribution on a V-shaped outdoor evaporator as a component of an air-source transcritical CO2 heat pump when subjected to frosting conditions. To this end, we developed and validated against independent experiments a numerical frost-formation model, and used it to study a multi-circuit evaporator of interest under different ambient conditions. It is shown that the uneven air-flow distribution results in varying frost formation patterns across different circuits of the heat exchanger, including differences in the amount of frost accumulated and its distribution among the individual tubes; the circuit with the largest frost weight accumulates 18% more frost compared to the one with the smallest in one hour under the sever frosting condition. Non-uniform frost formation also leads to air-flow distribution changing over time, and the rate at which this change occurs depends on the ambient conditions. For the presently investigated case, frost formation suppresses the non-uniformity of air-flow distribution. Moreover, evaporators with non-uniform and ideal uniform air-flows are compared and it is revealed that the difference in their capacities is more noticeable at the beginning of the frosting period.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call