Abstract

The ability to flexibly adapt thoughts and actions in a goal-directed manner appears to rely on cognitive control mechanisms that are strongly impacted by individual differences. A powerful research strategy for investigating the nature of individual variation is to study monozygotic (identical) twins. Evidence of twin effects have been observed in prior behavioral and neuroimaging studies, yet within the domain of cognitive control, it remains to be demonstrated that the neural underpinnings of such effects are specific and reliable. Here, we utilize a multi-task, within-subjects event-related neuroimaging design with functional magnetic resonance imaging to investigate twin effects through multivariate pattern similarity analyses. We focus on fronto-parietal brain regions exhibiting consistently increased activation associated with cognitive control demands across four task domains: selective attention, context processing, multi-tasking, and working memory. Healthy young adult monozygotic twin pairs exhibited increased similarity of within- and cross-task activation patterns in these fronto-parietal regions, relative to unrelated pairs. Twin activation pattern similarity effects were clearest under high control demands, were not present in a set of task-unrelated parcels or due to anatomic similarity, and were primarily observed during the within-trial timepoints in which the control demands peaked. Together, these results indicate that twin similarity in the neural representation of cognitive control may be domain-general but also functionally and temporally specific in relation to the level of control demand. The findings suggest a genetic and/or environmental basis for individual variation in cognitive control function, and highlight the potential of twin-based neuroimaging designs for exploring heritability questions within this domain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call