Abstract

BackgroundDespite cognitive function impairment in depression, its relationship to treatment outcome is not well understood. Here, we examined whether pretreatment activation of cortical circuitry during test of cognitive functions predicts outcomes for three commonly used antidepressants. MethodsEighty medication-free outpatients with major depression and 34 matched healthy controls were included as participants in the International Study to Predict Optimized Treatment in Depression (iSPOT-D) trial. During functional magnetic resonance imaging, participants completed three tasks that assessed core domains of cognitive functions: response inhibition (Go/NoGo), selective attention (oddball), and selective working memory updating (1-back). Participants were randomized to 1 of 3 arms: escitalopram, sertraline (serotonin-specific reuptake inhibitors [SSRI]), or venlafaxine-extended release (serotonin and norepinephrine reuptake inhibitor [SNRI]) therapy. Functional magnetic resonance imaging scans were repeated after 8 weeks of treatment, and remission was assessed using the Hamilton Rating Scale for Depression. ResultsDorsolateral prefrontal cortex activation during inhibitory “no go” responses was a general predictor of remission, with remitters having the same pretreatment activation as control participants and nonremitters hypoactivating relative to controls. Posttreatment dorsolateral prefrontal cortex activation was reduced in both remitters and controls but not in nonremitters. By contrast, inferior parietal activation differentially predicted remission between SSRI and SNRI medications, with SSRI remitters showing greater pretreatment activation than SSRI nonremitters and the SNRI group showing the opposite pattern. ConclusionsIntact activation in the frontoparietal network during response inhibition, a core cognitive function, predicts remission with antidepressant treatment, particularly for SSRIs, and may be a potential substrate of the clinical effect of treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.