Abstract

Enabling the transport of fronthaul traffic in next-generation cellular networks [fifth-generation (5G)] following the cloud radio access network (C-RAN) architecture requires a redesign of the fronthaul network featuring high capacity and ultra-low latency. With the aim of leveraging statistical multiplexing gains, infrastructure reuse, and, ultimately, cost reduction, the research community is focusing on Ethernet-based packet-switch networks. To this end, we propose using the high queuing delay percen-tiles of the G/G/1 queuing model as the key metric in front-haul network dimensioning. Simulations reveal that Kingman's exponential law of congestion provides accurate estimates on such delays for the particular case of aggregating a number of evolved Common Public Radio Interface fronthaul flows, namely functional splits and II D . We conclude that conventional 10 G, 40 G, and 100 G transponders can cope with multiple legacy 10–20 MHz radio channels with worst-case delay guarantees. Conversely, scaling to 40 and 100 MHz channels will require the introduction of 200G, 400G, and even 1T high-speed transponders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.