Abstract

Abstract Many researchers have measured the differences in electroencephalography (EEG) while viewing 2D and 3D movies to uncover the neuromechanism underlying distinct viewing experiences. Using whole-brain network analyses of scalp EEG, our previous study reported that beta and gamma bands presented higher global efficiencies while viewing 3D movies. However, scalp EEG is influenced by volume conduction, not allowing inference from a neuroanatomy perspective; thus, source reconstruction techniques are recommended. This paper is the first to measure the differences in the frontal-occipital networks in EEG source space during 2D and 3D movie viewing. EEG recordings from 40 subjects were performed during 2D and 3D movie viewing. We constructed frontal-occipital networks of alpha, beta, and gamma bands in EEG source space and analyzed network efficiencies. We found that the beta band exhibited higher global efficiency in 3D movie viewing than in 2D movie viewing; however, the alpha global efficiency was not statistically significant. In addition, a support vector machine (SVM) classifier, taking functional connectivities as classification features, was built to identify whether the frontal-occipital networks contain patterns that could distinguish 2D and 3D movie viewing. Using the 6 most important functional connectivity features of the beta band, we obtained the best accuracy of 0.933. Our findings shed light on uncovering the neuromechanism underlying distinct experiences while viewing 2D and 3D movies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call